Estimating the Fraction of PAR Absorbed by Live Phytoplankton from Satellite Data

Robert Frouin¹, Jing Tan¹, Toru Hirawake², B. Greg Mitchell¹, Natalia Rudorff³, Milton Kampel³

¹Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA

²Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan

³Remote Sensing Division, National Institute for Space Research, São José dos Campos, Brazil

Introduction

-Primary production, PP, depends on the fraction of photosynthetically available radiation, PAR, absorbed by live phytoplankton, APAR, i.e., PP = e APAR PAR, where e is an efficiency factor for photosynthesis.

-APAR can be expressed as (Kirk 1994):

$$APAR = \int \int \{K_d(\lambda, z) E_d(\lambda, z) a_{ph}(\lambda, z) / a_{tot}(\lambda, z) \} d\lambda / \int E_d(\lambda, 0^-) d\lambda$$

where K_d is the diffuse attenuation coefficients, E_d is the spectral solar irradiance below the surface, a_{ph} is the phytoplankton absorption coefficient, a_{tot} is the total absorption coefficient, and the integral is over the PAR spectral range, i.e., 400 to 700 nm, and over the depth z (from surface to the depth of the euphotic zone).

-In the case of a vertically homogeneous water body, APAR reduces to:

$$APAR = \int (E_d(\lambda) \ a_{ph}(\lambda) / a_{tot}(\lambda)) d\lambda / \int E_d(\lambda) d\lambda$$

- -Computing APAR requires knowledge of $E_d(\lambda)$, $K_d(\lambda)$, $a_{ph}(\lambda)$, and $a_{tot}(\lambda)$.
- $-E_d(\lambda)$ can be obtained by adapting existing methods for *PAR* above the surface. This is straightforward since the effect of clouds on transmittance is white in the PAR spectral range (see Frouin et al., 2018).
- $-K_d(\lambda)$, $a_p(\lambda)$, and $a_{tot}(\lambda)$ can be obtained from water reflectance, $R_w(\lambda)$, using various techniques; see, e.g., IOCCG, 2005 for absorption coefficients.
- -Estimating the various quantities from R_w is accomplished with uncertainties (it is especially difficult to estimate a_{ph}); no vertical information. Algorithms are also sensitive to atmospheric correction errors.

Algorithm Development

-Consider homogeneous case for simplicity. APAR can be rearranged in terms of R_w as:

$$APAR \approx \int \{E_d(O^-) [a_{ph}/(a_{ph} + a_{dm} + a_g)] [1 - (R_w(O^-)/R_{wO}(O^-))(f_O/f)(b_{bO}/(b_{bO} + b_{bp}))] \} d\lambda / \int E_d(O^-) d\lambda$$

by incorporating the following equations:

$$a_{tot} = a_{ph} + a_{dm} + a_{q} + a_{0}, R_{w0}(0^{-}) \approx f_{0}b_{b0}/a_{0}, R_{w}(0^{-}) \approx fb_{b}/a_{tot}$$

where a_{dm} , a_g and a_O are the absorption coefficients for detritus/sediments, colored dissolved organic matter, and pure water, respectively, b_{bO} and b_{bp} are the backscattering coefficients for water molecules and particles, respectively, and R_{wO} is the reflectance for pure sea water.

-This suggests that APAR can be approximated by a linear combination of $R_w(O^-)/R_{wO}(O^-)$ in the PAR spectral range. Introducing R_{wO} reduces the sensitivity to IOP variability.

APAR versus R_w/R_{w0} from field data

Figure 1: Relation between APAR versus(R_w/R_{w0} at MODIS wavelengths from field data (SPG archive, other cruises, 294 points).

Performance of linear R_w/R_{w0} combinations

Figure 2: R^2 and RMS (%) of estimated APAR using 3-band, 4-band, 5-band, and 6-band combinations when applying systematical examination to in-situ data. APAR is estimated as linear combinations of R_w/R_{w0} . MODIS bands at 412, 443, 531, 547, and 667 are considered.

Comparison of APAR algorithms ([Chl]-based, QAA-based, and linear R_w / R_{w0} combination)

Figure 3: Comparison of estimated and "measured" APAR using field data archived in the SPG database(red), collected during BIOSOPE (blue), OUTPACE (green), Japan Sea (black), and MV1102 (magenta) cruises: left - using OC3M-derived [chl] and APAR = $a[Chl]^b$, middle - using QAA-derived a_{ph} and a_{tot} , and right - using R_w / R_{w0} ratios at 412, 443, 488, 531, 547, and 667 nm.

-Accuracy is substantially improved using R_w / R_{w0} combination, e.g., RMSD reduced from 67 to 34% compared with QAA-based method.

Robustness of R_w/R_{w0} algorithm to atmospheric correction errors

Figure 4: Sensitivity of the best linear combination (i.e., using 6 bands) to atmospheric noise, which is spectrally correlated (black) and uncorrelated (red). The noise level at 443 nm, $\Delta \rho_w$ (ρ_w is the water reflectance above surface), varies from 0.001 to 0.01. R^2 and RMS (%) are displayed against the APAR calculated using in-situ measurements.

R_w/R_{w0} algorithm and uncertainty for satellite application

Figure 5: Left: comparison of estimated and "measured" APAR using field measurements. Error bars indicate the noise due to spectrally correlated atmospheric noise and algorithm error. Right: APAR uncertainty due to spectrally correlated atmospheric correction noise (blue) and algorithm error (red). $APAR=0.1084+1.8385R_w(412)/R_{w0}(412)-2.1448R_w(443)/R_{w0}(443)+0.5785*R_w(488)/R_{w0}(488)-0.1935R_w(531)/R_{w0}(531)+0.1141R_w(547)/R_{w0}(547)-0.00008R_w(667)/R_w(667)$.

Application to L2 MODIS imagery, Patagonia, March 26, 2019

Figure 6: Application of APAR algorithms to MODIS-A imagery of March 26, 2019. Top left: [Chl]; Top right: [Chl]-based APAR; Bottom left: R_w/R_{w0} -based APAR; Bottom right: uncertainty on R_w/R_{w0} -based APAR. Land is in white and missing data in black.

Average APAR from MODIS global L3 imagery, March 2018

Figure 7: Monthly average APAR (March 2018) estimated from MODIS L3 imagery by the R_w/R_{w0} algorithm and associated uncertainty (top and bottom, respectively.

-To improve APAR estimates, one may classify reflectance spectra, and for each class use a separate linear R_{w}/R_{w0} combination.

Figure 8: Top right: Average reflectance spectra for 4 classes obtained using k-means. Left: Modeled versus measured APAR for each class. The coefficients of estimating APAR are determined based on specific water class, using all 6 bands. Right: Modeled versus measured APAR, all four water classes together. RMSD is reduced from 34 to 28% and R^2 is increased from 0.53 to 0.69 when using classification.

Class-based linear R_w/R_{w0} combination, Patagonia, March 26, 2019

Relative frequency, [Chl] and linear R_w/R_{w0} combination algorithms

Figure 9: Top: Spatial maps of APAR and associated uncertainties obtained by the class-based R_w/R_{w0} algorithm (MODIS March 26, 2019, Patagonia). Bottom Relative frequency histograms for [Chl] and R_w/R_{w0} algorithms (class-based and standard).

Classification using simulated data set (IOCCG, 2005)

Figure 10: Water reflectance classes (top) and performance of linear R_w/R_{w0} combinations for each class (bottom) using IOCCG data set (500 situations).

Theoretical performance (IOCCG data) and evaluation (in situ data)

Figure 11: Theoretical performance of class-based APAR linear R_w/R_{w0} algorithm on IOCCG data, all classes (left) and evaluation on in situ data (right). IOCCG data set may not represent well in situ situations.

Summary/Conclusions

- -APAR can be derived directly from a linear combination of R_w/R_{w0} in the PAR spectral range. Spectral absorption coefficients, K_d , and E_d do not need to be determined.
- -For MODIS, 6 spectral bands (412, 443, 488, 531, 547, and 667) yields the most accurate estimates.
- -Accuracy is improved compared with [Chl]- and QAA-based algorithms, e.g., RMS difference reduced to 34% instead of 42 and 67%, respectively.
- -Algorithm is very robust to spectrally correlated atmospheric correction errors.
- -Classifying reflectance and using a linear R_w/R_{w0} combination for each class is promising to reduce the impact of IOP variability and improve APAR estimates.
- -A more comprehensive in situ dataset is needed to generalize the results. Simulated data may fill data gaps, and allow more robust APAR determinations per class, the subject of future work.